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Phylogenetic imputation has recently emerged as a potentially powerful tool for pre-
dicting missing data in functional traits datasets. As such, understanding the limita-
tions of phylogenetic modelling in predicting trait values is critical if we are to use them 
in subsequent analyses. Previous studies have focused on the relationship between phy-
logenetic signal and clade-level prediction accuracy, yet variability in prediction accu-
racy among individual tips of phylogenies remains largely unexplored. Here, we used 
simulations of trait evolution along the branches of phylogenetic trees to show how the 
accuracy of phylogenetic imputations is influenced by the combined effects of 1) the 
amount of phylogenetic signal in the traits and 2) the branch length of the tips to be 
imputed. Specifically, we conducted cross-validation trials to estimate the variability 
in prediction accuracy among individual tips on the phylogenies (hereafter ‘tip-level 
accuracy’). We found that under a Brownian motion model of evolution (BM, Pagel’s 
λ = 1), tip-level accuracy rapidly decreased with increasing tip branch-lengths, and only 
tips of approximately 10% or less of the total height of the trees showed consistently 
accurate predictions (i.e. cross-validation R-squared 0.75). When phylogenetic sig-
nal was weak, the effect of tip branch-length was reduced, becoming negligible for 
traits simulated with λ  0.7, where accuracy was in any case low. Our study shows 
that variability in prediction accuracy among individual tips of the phylogeny should 
be considered when evaluating the reliability of phylogenetically imputed trait values. 
To address this challenge, we describe a Monte Carlo-based method that allows one 
to estimate the expected tip-level accuracy of phylogenetic predictions for continuous 
traits. Our approach identifies gaps in functional trait datasets for which phylogenetic 
imputation performs poorly, and will help ecologists to design more efficient trait 
collection campaigns by focusing resources on lineages whose trait values are more 
uncertain.
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Introduction

Species traits are commonly used to address many ecological 
and evolutionary questions, such as the processes underlying 
ecological assemblages (Götzenberger et al. 2012, Kraft et al. 
2015), the links between species functional diversity and 
ecosystem functioning (Cadotte  et  al. 2011, Valencia-
Gómez et al. 2015), the tempo and mode of phenotypic evo-
lution (Felsenstein 1985, Martins 1994, Ackerly 2009) and 
the distribution of species and ecosystems properties across 
space and time (Violle et al. 2014). However, gathering trait 
information is often challenging because the collection of 
functional trait data is a time- and resource-consuming task. 
This hurdle is particularly noticeable at the macroecological 
scale, where trait information for hundreds or thousands of 
species may be required. Indeed, even one of the largest and 
most comprehensive functional trait databases compiled to 
date (i.e. the TRY Plant Trait Database, Kattge et al. 2011) is 
highly incomplete for many species (Sandel et al. 2015). As 
such, trait-based studies often deal with missing data.

A common way to proceed when missing values are 
present is to drop species with missing data and use those 
values that are known. This procedure would lead to unbi-
ased results if data are missing at random, although statis-
tical power may be reduced due to decreased sample size 
(Nakagawa and Freckleton 2008). However, data are rarely 
missing completely at random, since the presence of missing 
values for a given trait (e.g. seed mass) is often related to the 
values of another trait (e.g. rarity) (Sandel  et  al. 2015). In 
such cases, this can lead to spurious results in comparative 
studies (González-Suárez  et  al. 2012, Pakeman 2014) and 
likely other trait-based analyses. An alternative approach is 
to impute (via prediction) missing values using other known 
variables as predictors (Penone  et  al. 2014, Dray and Josse 
2015, Schrodt et al. 2015). Unfortunately, this also poses a 
challenge in cases where the relationship between missing 
values and potential predictive variables is weak.

Phylogenetic imputation has emerged as a potentially 
powerful framework for estimating missing data in functional 
trait datasets (Swenson 2014). The underlying principle is to 
model the evolution of a given trait on a phylogeny based on 
the species trait values available, and then use model param-
eters to predict the missing values. Phylogenetic imputation 
has several advantages over non-phylogenetic imputation. 
First, phylogenetic imputation can be applied to any kind of 
missing data. Second, traits can be imputed independent of 
other predictive variables as long as they show some degree  
of phylogenetic signal. Third, phylogenetic imputation can 
be conducted even on species for which biological informa-
tion is scarce (e.g. very rare or even extinct species), assum-
ing their phylogenetic position is known. Given the rapid 
increase in available molecular data, published phylogenies 
and major advances in phylogenetic methods, phylogeneti-
cally-informed imputation is rapidly becoming a common 
tool in ecology (Guénard  et  al. 2014, 2015, Penone  et  al. 
2014, Bland  et  al. 2015, Goberna and Verdú 2016, 

Swenson  et  al. 2017). Although it has been suggested that 
phylogenetically-imputed values may introduce high levels of 
error in local-scale studies (e.g. community ecology), phylo-
genetic imputation remains a promising tool for exploring 
macroecological patterns (Swenson et al. 2017).

A common procedure to estimate the reliability of 
phylogenetically-imputed values is to apply leave-one-out 
cross-validation (Guénard et al. 2013, 2015). The process 
begins by pruning all phylogenetic tips (e.g. species) with 
missing values in respect to the particular trait of inter-
est. Then, each observed value for which trait informa-
tion exists is dropped one at a time (target species), and 
re-estimated using information from the remaining spe-
cies (species used to model trait variation as a function of 
phylogeny). Finally, a comparison between the observed 
and predicted values can be performed using the cross-
validation R-squared (R2

cv) (or other similar error calcula-
tion method, Oba  et  al. 2003, Penone  et  al. 2014); the 
higher the R2

cv, the more reliable the imputed trait values 
(see Guénard et al. 2015 for details). However, it is impor-
tant to note that the R2

cv provides an index of the over-
all accuracy of predictions conducted across the complete 
set of known values (hereafter ‘trait-level accuracy’), but 
variability in prediction accuracy among individual tips of 
the phylogeny (in most cases species) may pass unnoticed 
(which we refer to as ‘tip-level accuracy’ hereafter). There 
are reasons why one should expect accuracy to vary con-
siderably across tips. For example, the distribution of ter-
minal branch lengths in phylogenetic trees is often highly 
skewed (Paradis 2016), and thus some species may be more 
phylogenetically isolated than others. If predictions made 
on short terminal branches are more accurate than those 
on longer terminal branches, then phylogenies showing a 
disproportionate number of recently-evolved species-rich 
clades (i.e. many short terminal branches) may return high 
R2

cv values, though individual predictions conducted on 
long terminal branches might be poor.

In addition to tip-level variability in imputation accuracy, 
we might also expect trait-level accuracy to vary among dif-
ferent traits. Phylogenetic signal in trait data is the most obvi-
ous factor affecting trait-level accuracy (Goberna and Verdú 
2016). Previous studies have shown that traits with little phy-
logenetic signal are error prone (Swenson et al. 2017); how-
ever, the combined effect of variability in prediction accuracy 
among individual tips and phylogenetic signal in the traits 
remains largely unexplored. In this paper, we use extensive 
simulations of trait evolution along simulated phylogenetic 
trees to show how the accuracy of phylogenetic imputations 
is influenced by the combined effects of variation in: 1) the 
amount of phylogenetic signal in the traits and 2) the branch 
length of the tips to be imputed. Our goal was to determine 
the set of conditions under which phylogenetic imputa-
tion performs well, and those conditions where it performs 
poorly. We then describe a Monte Carlo-based method that 
allows one to determine gaps in functional trait datasets that 
are well-suited to being filled using phylogenetic imputation. 
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We evaluate the performance of the method using a species-
level time-calibrated molecular phylogeny of European and 
North American tree species together with an empirical 
trait dataset.

Material and methods

Phylogenetic imputation methods for quantitative traits, 
an overview

To date, three different families of methods have been put 
forward for phylogenetic imputation: phylogenetic general-
ized linear models (pGLM; Swenson 2014, Goolsby  et  al. 
2016a), phylogenetic eigenvector regression models (Diniz-
Filho  et  al. 1998) and phylogenetic eigenvector maps 
(Guénard et al. 2013).

pGLM estimates the optimal phylogenetic variance–
covariance matrix for the observed values by either considering 
simple transformations of the matrix (e.g. Pagel’s lambda) or 
fitting specific models of evolution (e.g. Ornstein–Uhlenbeck, 
early-burst) from which missing values can be then estimated 
(see Swenson 2014 for details). This approach has been 
implemented in the R package Rphylopars (Goolsby  et  al. 
2016b) and only requires specifying the appropriate phylo-
genetic variance–covariance transformation or evolutionary 
model. Although the model that best fits the data is usually 
unknown, it can be determined through a heuristic search 
using maximum likelihood (see Freckleton et al. 2002, 2011 
for details).

Phylogenetic eigenvector regression models (PVR) (Diniz-
Filho et al. 1998, 2011) for imputation begin by extracting 
the principal coordinates of the pairwise phylogenetic dis-
tance matrix between species (generating n – 1 phylogenetic 
eigenvectors where n equal the number of terminal tips). The 
most relevant eigenvectors in explaining the observed trait 
variation are then used as explanatory variables in a multiple 
linear regression, with the trait of interest as the response vari-
able (see Diniz-Filho et al. 2012 for a review on model selec-
tion methods for phylogenetic eigenvectors). Note that the 
regression model only includes species for which traits are 
known. Finally, eigenvector values of the target species are 
used within the regression model to predict missing values 
(see Swenson 2014 for details). It is important to note that 
unlike pGLM, PVR does not assume an explicit model of 
trait evolution.

Finally, phylogenetic eigenvector mapping (PEM) com-
bines both evolutionary dynamics and information on topol-
ogy (Guénard et al. 2013). PEM shares some similarities with 
PVR and, as such, it was conceived to improve over PVR 
because it additionally considers underlying evolutionary 
models (Diniz-Filho et al. 2015). In PEM, the topology of 
the phylogeny is first coded as a binary influence matrix rep-
resenting ancestor–descendant relationships. This matrix is 
then transformed according to a given evolutionary model to 
represent trait change dynamics. Information on trait evolu-
tionary dynamics along the branches of the phylogenetic tree 

is represented using edge weights. Each branch is assigned a 
weight Wa,ψ proportional to the extent of the change that is 
expected (according to an assumed evolutionary model) to 
occur along that branch, where a (0  a  1) is the steepness 
parameter, and ψ (0  ψ  ∞) is the relative evolutionary 
rate of the trait being modelled. This allows the assignment 
of different function parameters to different portions of the 
phylogeny, and thus heterogeneous evolutionary dynamics 
(Beaulieu et al. 2012, Revell et al. 2012) can be also accommo-
dated. The steepness parameter a is related to Pagel’s (1999) 
k (a = 1 – k), and describes how abrupt the changes in trait 
values occur through time after any given branching event. 
When a is set to 0, the expected amount of trait change along 
the branch is proportional to the square root of the branch 
length (i.e. Brownian motion; Vienne et al. 2011), whereas 
when a is set to 1 changes occur at a fixed rate ψ whenever 
species diverge irrespective of the branch length. Phyloge-
netic eigenvector maps (PEMs) are obtained by weighting 
and centring the final influence matrix, and then the most 
important eigenvectors in explaining the observed trait varia-
tion can be used to predict missing values as explained for 
PVR above. The PEM framework is implemented in the R 
package MPSEM (Guénard and Legendre 2014).

Because PEM is superior to PVR in that it accommo-
dates different evolutionary models, here we focus on PEM 
and pGLM (as implemented in the R package Rphylopars; 
Goolsby et al. 2016b).

The influence of phylogenetic signal and tips  
branch-lengths on phylogenetic imputation

Simulation of phylogenetic trees
We used the function ‘pbtree’ in the phytools R package (Rev-
ell 2012) to generate a pool of 10 000 simulated, pure-birth 
ultrametric phylogenies of size n = 100. The height of the 
trees (i.e. root to tip length) was constrained to 1 in all cases. 
From this pool, we first randomly selected n = 50 phylogenies 
to evaluate the different imputation methods. Skewed or dis-
continuous distributions of terminal branches (i.e. overrepre-
sentation of short terminal branches and a few long branches, 
Paradis 2016) may mislead the interpretation of the effect 
of tip branch-lengths on prediction accuracy, because lack 
of variability and/or continuity in branch-lengths. We thus 
illustrate our results (i.e. Fig. 2 and Supplementary mate-
rial Appendix 1 Fig. A1) on the phylogeny in the simulated 
pool that displayed the maximum evenness in the distribu-
tion of tip branch-lengths (i.e. similarity in the number of 
long versus short terminal branches). We estimated evenness 
in tip branch-lengths by first grouping the tips of each phy-
logeny into ten equitable branch-length categories (i.e. ter-
minal branches of length between 0–10% of the tree height, 
10–20%, 20–30%, and so on), and then calculated Pielou’s 
evenness index for each phylogeny, retaining the phylogeny 
having the maximum evenness value. Results from the full 
sample of 50 phylogenies are provided in Supplementary 
material Appendix 1 Fig. A2. We also explored the accuracy 
of predictions using pure-birth ultrametric phylogenies for 
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n = 50 and n = 200 tips. Finally, we tested for bias in imputa-
tion accuracy with tree shape by comparing results on the tree 
topologies that showed the minimum and maximum values 
for the gamma statistic (tree steminess; Pybus and Harvey 
2000) and the Colless’ index (tree imbalance; Mooers and 
Heard 1997), respectively.

Simulation of quantitative traits
We simulated traits with different levels of phylogenetic 
signal using a gradient varying from complete lack of phy-
logenetic signal (Pagel’s λ = 0) to Brownian motion (Pagel’s 
λ = 1) by rescaling the phylogenetic variance–covariance 
matrices using Pagel’s λ. Rescaling is achieved by multiply-
ing all values off the main diagonal of the covariance matrix 
by λ. Pagel’s λ was varied as follows: 0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.85, 0.90, 0.95 and 1. Trait evolution 
was then simulated along the branches of the rescaled phy-
logenies following a pure Brownian motion model (BM) of 
evolution (root value a = 0 and instantaneous variance σ2 = 1). 
We only retained traits that demonstrated a phylogenetic sig-
nal within λx  0.01, where λx is the original λ under which 
traits were simulated. In the case of λx = 0, we considered all 
traits that showed a value of the statistic λ  0.01. Simula-
tions were conducted iteratively until n = 500 traits per phy-
logeny were obtained. All trait simulations were conducted 
using the functions ‘fastBM’ and ‘phylosig’ in the phytools 
R package (Revell 2012) and ‘rescale’ in the geiger R package 
(Harmon et al. 2008).

Phylogenetic imputation of simulated data
We conducted leave-one-out cross-validation for each simu-
lated trait separately for both PEM and pGLM. For each 
tip value i for a given trait, we dropped the value of i (target 
value) and used the information from the remaining n – 1 
elements (model values) to estimate model parameters and 
predicted value for i. For PEM, we estimated a single steep-
ness parameter a for the model values in the cross-validation 
trials using restricted maximum likelihood (function ‘PEM.
fitSimple’ in MPSEM R package). The relative evolution 
rate ψ was set to 1 in all cases following the suggestion of 
Guénard et al. (2013). Note that ψ has no effect when its 
value is assumed to be constant across the phylogeny. We 
then selected the subset of eigenvectors that minimized 
information loss using a forward stepwise procedure (func-
tion ‘lmforwardsequentialAICc’ in the MPSEM R package), 
and retained the regression model with the lowest AICc 
score (Guénard et al. 2013). Finally, the eigenvector values 
of the target species were used in the regression model to 
impute its value.

Phylogenetic imputations using pGLM were generated 
using the function ‘phylopars’ as implemented in the R pack-
age Rphylopars (Goolsby  et  al. 2016b). For each tip value 
i for a given trait, we dropped the value of i and fitted the 
most appropriate lambda model to the remaining n – 1 val-
ues, and then we used the model parameters to inform the 

phylogenetic variance–covariance matrix and estimate the 
predicted value i.

Estimation of the accuracy of predictions
To assess the influence of phylogenetic signal on phylogenetic 
imputations, we estimated the overall accuracy of predictions 
for each cross-validation trial (trait-level accuracy) using the 
cross-validation R-squared:

R
y y n
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i i

y

2 1

2

21= −
−( )=∑ ^ /

	 (1)

where ^yi  is the predicted value for target tip i for any  
given trait, yi the simulated ‘observed’ value for target tip 
i, n the number of phylogenetic tips, and s2

y is the variance 
of the simulated ‘observed’ values for the trait. R2

cv = 1 indi-
cates perfect match between predicted and observed values, 
values 1  R2

cv  0 indicate imperfect predictions, and R2
cv = 0 

are produced when the mean square prediction error equals 
the mean square deviation from the mean (i.e. the sample 
variance of the simulated ‘observed’ values), in which case the 
model is no better in predicting values than simply assuming 
the trait mean across all tips (Guénard et al. 2015).

To assess the influence of tip branch-lengths on phyloge-
netic imputation, we estimated the accuracy of predictions 
for each individual tip on the phylogenies (tip-level accuracy) 
using the cross-validation R-squared coefficient as described 
above (but note the value of n in estimates of tip-level R2

cv 
values is equal to 1, Eq. 1). The observed distributions of 
tip-level R2

cv values were highly skewed (Supplementary mate-
rial Appendix 1 Fig. A1). Therefore, we summarized tip-level 
accuracy as the fraction of tip-level R2

cv values (n = 500 per 
tip and phylogenetic signal scenario) that were higher than 
a given threshold, here 0.75 (hereafter ‘P0.75’). This thresh-
old was set to provide a good contrast among and within 
phylogenies.

A Monte Carlo-based method to estimate the expected 
accuracy of phylogenetic imputation

We propose a Monte Carlo-based simulation framework as 
a pipeline to determine gaps in functional trait datasets that 
are suited to being filled via phylogenetic imputation. Con-
versely, the procedure also allows to assess which species are 
prone to greater levels of uncertainty regarding their impu-
tation. Given a fully-resolved ultrametric phylogeny and a 
quantitative trait with missing values (Fig. 1), the latter are 
pruned (step 1 in Fig. 1), and the phylogenetic signal in the 
observed values of the trait (hereafter λx) is estimated using 
Pagel’s λ (Pagel 1999) (step 2). Note that the ‘true’ phylo-
genetic signal of the trait (i.e. including missing values) is 
assumed to be approximately equal to that estimated for the 
observed values of the trait (i.e. based on the species for which 
traits are known). To determine the expected tip-level accu-
racy of missing values, the phylogenetic variance–covariance 
matrix is rescaled using λx (step 3), and traits are simulated 
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Figure 1. Workflow of the Monte Carlo-based method. Given a phylogeny and a quantitative trait with missing values, the latter are pruned 
(step 1), and the phylogenetic signal in the observed values of the trait (λx) is estimated using Pagel’s λ (step 2). The phylogenetic 
variance–covariance matrix is then rescaled using λx (step 3), and a high number of traits are simulated along the branches of the rescaled 
phylogeny following a pure Brownian motion model (BM) of evolution (step 4). If the value of λ in the simulated trait is approximately equal 
to λx (i.e. λ = λx  0.01), the corresponding trait is stored (step 5); otherwise, the workflow goes back to step 4. For each simulated trait, the 
values corresponding to the phylogenetic placement of missing empirical values are dropped (step 6) and subsequently imputed using the 
remaining values (step 7). Finally, the accuracy of each individual prediction is measured using the cross-validation R-squared (R2

cv) (step 8), 
and the distributions of R2

cv values are summarized to obtain an estimate of the expected accuracy of predictions for each tip (step 9).
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along the branches of the rescaled phylogeny following a 
pure Brownian motion model (BM) of evolution (step 4). To 
ensure that the simulated traits are close to the desired phy-
logenetic signal (i.e. λx), only those that show a phylogenetic 
signal λ within the bounds of an a priori defined range of 
values around λx are retained (e.g. λx  0.01) (step 5). Traits 
simulations are conducted iteratively until a high number of 
traits (e.g. n = 500) are obtained. For each simulated trait, val-
ues corresponding to the phylogenetic placement of missing 
(target) values in the empirical dataset are dropped (step 6) 
and subsequently imputed using the remaining values (step 
7). Finally, the accuracy of each individual prediction (i.e. 
tip-level accuracy, n = 500 predictions per tip) is measured 
using the cross-validation R-squared (R2

cv) (step 8), and the 
distributions of R2

cv values (n = 500 per tip) summarized to 
obtain an estimate of the expected accuracy of predictions for 
each tip (step 9). The method is fully implemented in the R 
environment (R Development Core Team) and an easy-to-
use function is provided in Supplementary material Appen-
dix 3 where full details can be found.

Evaluating the performance of the Monte Carlo method using 
empirical data
To assess the performance of the method, we first constructed 
a time-calibrated molecular phylogeny for the native trees 
of Europe and North America following the pipeline of 
Roquet et al. (2013) (see Supplementary material Appendix 2 
for full details on the phylogenetic procedure), and matched 
this to data on three key functional traits related to persis-
tence, regeneration and dispersal provided by the LEDA 
Traitbase (Kleyer et al. 2008). Specifically, we compiled infor-
mation on seed mass (SM), canopy height (CH) and specific 
leaf area (SLA), and pruned the phylogeny to include only 
species that had at least one available measurement for each 
trait (n = 69 species, 61 angiosperms and 8 gymnosperms). 
When multiple measurements were available for a species, we 
took the species mean. Trait values were log-transformed to 
fit assumptions of normality. The phylogenetic signal in the 
traits was calculated using Pagel’s λ (λ = 0.97, 0.82 and 0.65 
for SM, CH and SLA respectively; p  0.001 based on a like-
lihood ratio test for all traits).

For each empirical trait, we sampled 30, 60 and 90% of 
the species at random 1000 times, and dropped the trait val-
ues corresponding to the placement of sampled (target) spe-
cies in each random draw. This procedure resulted in three 
pools of incomplete traits (n = 1000 traits per pool) for each 
empirical trait. We then estimated the expected accuracy of 
predictions for the target species using the method described 
above (Fig. 1). The bounds for the λ statistic of the simu-
lated traits (n = 500 simulations per trait in the sample pool) 
were set at λx  0.01, where λx is the phylogenetic signal in 
the observed (non-missing) values of the traits. We calculated 
Pearson’s correlation coefficients between the predictions 
conducted on the target species and their actual values, and 
regressed these coefficients against the average expected accu-
racy of predictions (i.e. mean P0.75 values) using simple linear 

models. Finally, we conducted leave-one-out cross-validations 
for each empirical trait and estimated the overall accuracy of 
predictions across all tips (i.e. trait-level accuracy).

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.12111/1  (Molina-Venegas et al. 
2018).

Results

Phylogenetic imputation of simulated data

The average trait-level accuracy (i.e. mean trait-level R2
cv 

value) for λ = 1 ranged between 0.61 and 0.79 (n = 50 phy-
logenies, n = 500 traits per phylogeny, Supplementary mate-
rial Appendix 1 Table A1). As expected, trait-level accuracy 
decreased progressively with lower phylogenetic signal, 
becoming very poor (mean R2

cv values close to 0) at λ  0.6. 
Although both phylogenetic imputation methods yielded 
qualitatively similar results for trait-level accuracy, pGLM 
showed slightly more accurate predictions for traits simu-
lated with λ  0.9 (Supplementary material Appendix 1 
Table A1).

Tip-level accuracy was strongly and negatively related 
to tip branch-lengths, with the shape of the relationship 
being influenced by strength of phylogenetic signal (Fig. 2 
and Supplementary material Appendix 1 Fig. A2). Under 
a scenario of strong phylogenetic signal, λ = 1, P0.75 values 
(i.e. tip-level accuracy) rapidly decreased with increasing tip 
branch-lengths, and were overall lower than 0.5 for tips lon-
ger than 20 to 30% of the total height of the trees (Fig. 2 and 
Supplementary material Appendix 1 Fig. A2). For weaker 
phylogenetic signal, the effect of tip branch-length on accu-
racy was less pronounced, becoming negligible for traits 
simulated with λ  0.7. We did not observe any systematic 
bias in the relationship between tip-level accuracy (P0.75) 
and tip branch-lengths with the size of the phylogeny or 
tree shape (Supplementary material Appendix 1 Fig. A3 
and Fig. A4), although P0.75 values derived from the highly-
unbalanced tree seemed to decrease slightly more sharply 
with increasing tip branch-lengths (Supplementary material 
Appendix 1 Fig. A4). Both phylogenetic imputation meth-
ods yielded similar results for tip-level accuracy (see Supple-
mentary material Appendix 1 Fig. A5 for results obtained 
with pGLM).

Phylogenetic imputation of empirical traits

As expected, we found a positive relationship between the 
average expected accuracy of predictions (i.e. mean P0.75 val-
ues, hereafter referred as to ‘expected accuracy’) and the cor-
relation between predicted and actual trait values (hereafter 
referred as to ‘actual accuracy’) (Fig. 3). This was particularly 

http://dx.doi.org/10.5061/dryad.XXXXX ﻿
http://dx.doi.org/10.5061/dryad.XXXXX ﻿
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noticeable for seed mass (SM) and scenarios where 30% 
and 60% of trait values were missing (R2 = 0.05; p  0.001, 
R2 = 0.10; p  0.001 respectively) (Fig. 3a). However, the 
relationship weakened when 90% of trait values were missing 
(R2 = 0.01; p  0.001) and prediction intervals were in any 
case wide. Both the expected and the actual accuracy of pre-
dictions decreased as the amount of missing data increased 
(Table 1). For specific leaf area (SLA), the relationship 

between expected and actual accuracy was also significantly 
positive, though their values were overall lower (Fig. 3b). In 
contrast, canopy height (CH) showed very weak and non-
significant relationships (R2  0.005 and p  0.1 in all cases) 
and the actual accuracy was the lowest among the empirical 
traits (Table 1). Trait-level accuracy for SM, SLA and CH was 
0.73, 0.37 and 0.42, respectively.

Discussion

Phylogenetic imputation is emerging as a promising tool  
for filling gaps in functional trait datasets by using 
ancestor–descendant relationships and known trait values for 
related species. Given the rapid increase in the availability of 
published phylogenetic trees for species-rich taxonomic groups 
(Zanne et al. 2014), and large, but gappy, trait databases, there 
is much interest in the potential application of phylogenetic 
imputation to explore macroecological patterns (Swenson et al. 
2017). It is essential, therefore, to better understand under 
which circumstances phylogenetic imputation provides reli-

Table 1. Centrality metrics for the distribution of mean P0.75 values 
(average expected accuracy) and Pearson’s r coefficients between 
predicted and actual trait values (actual accuracy) for predictions 
conducted on empirical traits. The percentages indicate the amount 
of missing values in the data.

Trait

Mean P0.75 values 
(median)

Pearson’s r coefficients 
(mean)

30% 60% 90% 30 % 60% 90%

Seed size 0.63 0.59 0.36 0.82 0.76 0.39
Canopy height 0.47 0.44 0.35 –0.005 –0.02 –0.04
SLA 0.43 0.42 0.37 0.17 0.16 0.11

Figure 2. Scatter plots showing the relationship between tip-level accuracy of predictions conducted for simulated traits (P0.75, y-axes) and 
tip branch-lengths (x-axes) across varying scenarios of phylogenetic signal. Trait simulations (n = 500 per phylogenetic signal scenario) were 
conducted along the branches of the phylogeny that showed maximum evenness in the distribution of tip branch-lengths (see text). Tip-
level accuracy was summarized for each tip and phylogenetic signal scenario as the fraction of tip-level R2

cv values that were higher than a 
certain threshold value set to 0.75 (P0.75). Tips are sorted in increasing order of length (relative to the total height of the tree).
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able estimates of missing species values. In contrast to previous 
studies (Guénard et al. 2013, 2015, Swenson et al. 2017), we 
focused on tip-level accuracy of imputed values which show 
large variation across phylogenetic tips.

Our simulations show how tip-level accuracy of predic-
tions is largely determined by the combined effects of trait 
phylogenetic signal and the branch length of the tips being 
imputed. High accuracy is generally achieved for traits with 
relatively high phylogenetic signal (λ = 1) and for short tips 
(those less than approximately 10% of the height of the 
trees), which subtend species that have had little time for 
independent evolution. For traits with relatively weak phy-
logenetic signal (i.e. λ  0.7), the accuracy of tip-level pre-
dictions was rather low across all tips, irrespective of their 
lengths. This suggests that phylogenetically imputed values 
of trait datasets should be interpreted with caution given 
that 1) most functional traits used in ecological research 
exhibit a phylogenetic signal λ  1 (Liu et al. 2015, Swen-
son et al. 2017) and 2) the distribution of terminal branch 
lengths in most phylogenetic trees is seldom uniform (Para-
dis 2016). For example, although phylogenetic imputation 
may be useful to predict missing values for highly conserved 
traits (e.g. seed mass) in ‘stemmy’ lineages (i.e. clades with 
short terminal branches), predictions conducted on more 
‘tippy’ lineages (i.e. clades with long terminal branches) may 

be unreliable. Importantly, ‘tippy’ topologies may be par-
ticularly prevalent in regional phylogenies where sampling 
of lineages is often incomplete (i.e. only the species within 
a given area are included). Therefore, given a trait dataset 
with missing values (target species) to be phylogenetically-
imputed, we suggest that it is best to include as many close 
relatives of the target species as possible prior to phyloge-
netic modelling.

We have shown that the expected accuracy of predictions 
conducted on highly conserved empirical traits (e.g. seed 
mass) can be reasonably well anticipated by tip branch-length 
information (Fig. 2 and Fig. 3). Thus, our Monte Carlo-
based approach allows one to detect gaps in functional trait 
databases that are more suitable to be filled by phylogenetic 
imputation (Supplementary material Appendix 3). Given that 
predictions conducted on shorter tips are expected to be over-
all more accurate (Fig. 2), future trait collection campaigns 
should be oriented to first complete missing values that are 
subtended from long terminal branches. It is also important 
to note that functional trait databases may be biased towards 
certain groups of species (González-Suárez et al. 2012), and 
thus missing data may be often clumped on the phylogenies 
(i.e. all values subtended from a given node are missing). In 
such cases, the relevant information for prediction accuracy 
will be the distance to the nearest neighbour with a known 

Figure 3. Scatter plots showing the relationship between average expected accuracy (mean P0.75 values) and actual accuracy (i.e. Pearson 
correlation between predicted and actual trait values) of predictions conducted on empirical traits (i.e. seed mass and specific leaf  
area) measured for European and North American tree species. Solid and dashed lines represent the regression slope and 95% prediction 
intervals, respectively.
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trait value, rather than tip branch-length information itself. 
When missing data show strong phylogenetic clustering, 
the accuracy of species’ trait predictions may be drastically 
reduced (Goberna and Verdú 2016), which may explain the 
high incidence of low expected accuracy values for scenar-
ios where 90% of trait values were missing (Fig. 3). Thus, 
future trait collection campaigns should also aim at sampling 
across major lineages with high phylogenetic clustering of 
missing data.

Our trait simulations assumed a single rate of evolution 
across the phylogeny (i.e. instantaneous variance of the BM 
process), which is the optimal scenario for phylogenetic 
imputation. However, this assumption may not hold for 
most empirical traits, and especially for clades containing 
large number of species, where a combination of factors 
may affect evolutionary rates of phenotypic change across 
lineages. For example, it is well-known that niche con-
servatism (i.e. the tendency for many ecological traits to 
remain similar over time; Wiens et al. 2010) leads to strong 
phenotypic resemblance between closely related species or 
lineages (Harvey and Pagel 1991). However, adaptive radi-
ations within certain lineages (e.g. trait-linked diversifica-
tion, Verdú and Pausas 2013) will erode this ‘background’ 
phylogenetic signal, because closely-related and recently 
evolved species rapidly diverge in their fundamental niches 
to allow coexistence (Abrams 1983). We suggest that in 
such cases high predicted trait-level accuracy from cross-
validation exercises may be misleading if estimated from 
species outside an adaptive radiation, where imputed val-
ues are for species within an adaptive radiation. This may 
result in inaccurate predictions even in cases where there 
is high expected accuracy. For example, we found similar 
trait-level accuracy of predictions (i.e. overall accuracy 
across all tips) for canopy height and specific leaf area (0.47 
and 0.42 respectively), yet the former showed substantially 
lower correlations between predicted and actual trait values 
(Table 1). This example illustrates a fundamental limita-
tion of current phylogenetic imputation methods, which 
assume a phylogenetic model with strong absolute explana-
tory power in explaining the variance in the observed data 
informs our predictive accuracy across all tips. A possible 
solution would be to subset the phylogenetic tree to just 
close relatives of the target species for which imputed val-
ues are required. This approach may be particularly helpful 
when imputing global datasets that often include hundreds 
or thousands of species from lineages with distinct evolu-
tionary trajectories.

We conclude that phylogenetic imputation as substitute 
for directly measured trait data may help to fill the gaps in 
functional trait datasets, but suggest that information on pre-
diction accuracy should be considered in subsequent analy-
ses. For example, uncertainty in tip-level estimates could be 
included as measurement error in macroecological analyses. 
The results of this study and our Monte Carlo-based method 
to assess predictability error for trait imputation will be use-
ful to future imputation exercises, and help ecologists to 

design more efficient trait collection campaigns by focusing 
resources on those lineages whose functional trait values are 
likely poorly estimated by phylogeny.
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